
PHARE Documentation
Release 1.0

Nicolas Aunai, Roch Smets, Philip Deegan

May 15, 2024

THEORY

1 The hybrid PIC formalism 3

2 The Particle-In-Cell formalism 7

3 Spatial discretization 9

4 Temporal discretization 11

5 Adaptive Mesh Refinement 13

6 Getting PHARE 15

7 Build PHARE 17

8 Run PHARE from python 19

9 Run from the PHARE binary 21

10 Simulation inputs 23

11 Examples 25

12 Data analysis 27

13 Plotting fields 29

14 Plotting particle distributions 31

15 PHARE tests 33

i

ii

PHARE Documentation, Release 1.0

PHARE is a Hybrid Particle-In-Cell (PIC) code. It solves the evolution of the Vlasov equation of an arbitrary number
of ion populations in a Lagrangian way. Electrons are modeled as a single fluid. Their momentum equation is used to
compute the electric field, assuming quasineutrality.

Using Adaptive Mesh Refinement, provided by the library SAMRAI, PHARE aims at filling the gap between sub-ion
scales and large “MHD” scales by increasing the mesh resolution wherever the solution needs it.

THEORY 1

PHARE Documentation, Release 1.0

2 THEORY

CHAPTER

ONE

THE HYBRID PIC FORMALISM

The Hybrid formalism consists in modeling the plasma as a combination of constituants treated with a different physical
models. This usually means that ions and electrons are treated differently. A rather complete description of the different
ways a code can be “hybrid” is given in The Hybrid Multiscale Simulation Technology by A.S. Lipatov. In astrophysical
and space applications, the main application domains of PHARE, “hybrid” usually means that ions are considered at
the kinetic level while electrons are considered as a fluid. This is the case for PHARE and this is what we mean by
“hybrid” on this page.

1.1 The ion equations

The hybrid model consists in evolving in space r and time 𝑡, the velocity distribution function 𝑓𝑝 of each ion populations
p under the influence of the electric E and magnetic field B. This is done by solving the Vlasov equation for all ion
populations when collisions are negligible.

𝜕𝑓𝑝
𝜕𝑡

+ v · 𝜕𝑓𝑝
𝜕r

+
𝑞𝑝
𝑚𝑝

(E+ v ×B) · 𝜕𝑓𝑝
𝜕v

= 0 (1.1)

Having the new distribution everywhere at 𝑡+∆𝑡, it is easy to calculate the ion moments as the sum of the moments
of all populations. Namely, for the ion density 𝑛𝑖 and bulk velocity ui

𝑡𝑜

𝑛𝑖(r, 𝑡) =∑︁
𝑝

∫︁
𝑓𝑝(r,v, 𝑡)𝑑v

u𝑖(r, 𝑡) =

1

𝑛𝑖

∑︁
𝑝

∫︁
v𝑓𝑝(r,v, 𝑡)𝑑v

(1.2)

= ∑︁
𝑝

∫︁
𝑓𝑝(r,v, 𝑡)𝑑vu𝑖(r, 𝑡)=

1

𝑛𝑖

∑︁
𝑝

∫︁
v𝑓𝑝(r,v, 𝑡)𝑑v

3

PHARE Documentation, Release 1.0

1.2 The electron momentum equation

What about the electrons? Remember? They are assumed to behave as a fluid. This is wrong of course in collisionless
systems since nothing makes the density, velocity etc. of the electrons to depend on purely local physics as collisions
would in a “real” fluid. But that’s an approximation the hybrid formalism makes to simplify the physics (and make
simulation lighter) compared to the fully kinetic system and that is already a much more realistic way of modeling the
plasma and say, single fluid magnetohydrodynamics. Now there are subtleties. The electron momentum equation is:

𝑚𝑒𝑛𝑒
𝑑ue

𝑑𝑡
= −∇ ·Pe − 𝑒𝑛𝑒(E+ ue ×B)

1.3 Electromagnetic field equations

“Treating electrons as a fluid”, you probably think we solve that equation, in contrast to the Vlasov equation we used
for ions. Well not really. . . But let’s say we did. Now we would have to wonder where the magnetic field and electric
field would come from. For the magnetic field, the answer is easy. We just use the Maxwell-Faraday equation:

𝜕B

𝜕𝑡
= −∇×E

What about the electric field now? There is all the trick of Hybrid codes. We actually do not solve the electron
momentum equation directly to get the new electron fluid momentum. Instead we make assumptions on the electron
fluid, and use that momentum equation to calculate the electric field ! Thus, the momentum equation is re-written:

E = −ue ×B− 1

𝑒𝑛𝑒
∇ ·Pe +

𝑚𝑒

𝑒

𝑑ue

𝑑𝑡

4 Chapter 1. The hybrid PIC formalism

PHARE Documentation, Release 1.0

1.4 Quasineutrality

At this point, the equation for the electric field still has unknowns. The most obvious perhaps is 𝑛𝑒 the electron particle
density. This is where the hybrid formalism makes the assumption that at the scale we solve the equations, the plasma
is quasineutral, and thus we can neglect the difference between 𝑛𝑖 and 𝑛𝑒 and have only one variable 𝑛: the plasma
density. Since we have the total ion density already, that’s our 𝑛. Quasineutrality enable us to get the electron bulk
velocity from the known ion bulk velocity and the electric current density:

ue = ui −
j

𝑒𝑛

The total current density is obtained from the static Maxwell-Ampere equation, meaning we neglect the displacement
current:

𝜇0j = ∇×B

The electric field is now equal to

E = −ue ×B− 1

𝑒𝑛
∇ ·Pe +

𝑚𝑒

𝑒

𝑑ue

𝑑𝑡

1.5 Massless electrons

The next assumption usually made in Hybrid codes, that is also made in PHARE, is that the spatial and time scales at
which we are interested in are much larger and longer that the scales at which the electron bulk inertia matters. The
electrons being so light compare to even protons, that it is mostly ok to neglect the last term of, which now reads:

E = −ue ×B− 1

𝑒𝑛
∇ ·Pe

1.4. Quasineutrality 5

PHARE Documentation, Release 1.0

1.6 Electron closure

Since we do not have an electron distribution function in hand, the pressure is not known a priori. Hybrid codes thus
have to come with a so-called closure equation which role is to give us the pressure everywhere at time t, based on
some assumption on the system. Usually, unless in very specific conditions, there is no rigorous way of getting such
equation and most hybrid code assume a closure that is “reasonable” and above all “simple” to calculate.

Perhaps the simplest and most used electron closure is the isothermal one. This simply say that the electron pressure
𝑃𝑒 is given by the product of the density by some scalar constant that we call “the electron temperature”.

𝑃𝑒 = 𝑛𝑇𝑒

1.7 Dissipative terms

Using above equations to calculate the electric field would result in current sheets to collapse at grid scale in the
absence of an intrinsic dissipation scale in the system. Too ways are typically employed in Hybrid codes to include
such a dissipation. Joule resistivity well known to be used already in MHD codes. It is a simple term 𝜂j to add on
the right hand side of the electric field equation. This term adds diffusion of magnetic flux. However there is no scale
at which this terms dominate over the electron ideal term −ue × B, unless 𝜂 is so large that ion scale structures are
diffused away too.

Another term that can be employed is the so-called hyper-resistivity (sometimes called hyper-viscosity) that takes the
form −𝜈∇2j In contrast to classical resistivity, this terms (due to the second order derivative) comes with an intrinsic
scale at which it is dominant over electron convection term and efficiently adds sub-ion scale dissipation.

PHARE include these two terms and the electric field is obtained via :

E = −ue ×B− 1

𝑒𝑛
∇𝑃𝑒 + 𝜂j− 𝜈∇2j

6 Chapter 1. The hybrid PIC formalism

CHAPTER

TWO

THE PARTICLE-IN-CELL FORMALISM

There are two ways to solve the Vlasov equation for ion populations. It can be solved calculating eulerian derivatives,
i.e. discretizing velocity and spatial dimensions and solving the equation at those fixed locations. This is called a
“Vlasov Hybrid code”. It is generally complex and require lots of computational resources. The other way consists in
adopting a Lagrangian viewpoint. That is, cutting the initial distribution function in N weighted bins and follow the
dynamics of those chunks in phase space. The little pieces of distributions are called “macro-particles”. Decomposing
the distribution function of the population into the contribution of macro-particles in the following way is the base of
the so-called “Particle-in-Cell” (PIC) method.

𝑓𝑝(r,v, 𝑡) =

𝑁𝑝∑︁
𝑚

𝑤𝑚𝑆(r− r𝑚(𝑡))𝛿(v − v𝑚(𝑡))

where r𝑚 and v𝑚 are the position and velocity of the 𝑚𝑡ℎ macro-particle. 𝑤𝑚 represents the weight of that macro-
particle, i.e. how much it counts in the evaluation of 𝑓𝑝. 𝛿 is the Dirac function, which says that a macro-particle
represent a specific velocity in the distribution. In contrast, the function 𝑆 is a finite support function representing the
“shape” of the macro-particle in the spatial dimension. This function tells us how far from the macro-particle a local
distribution sees its influence. In PHARE we use b-splinefunctions to model 𝑆. PHARE uses b-splines of the first,
second and third order. The higher the order the further a macro-particle influences the distribution, but the longer it
takes to compute it.

7

PHARE Documentation, Release 1.0

8 Chapter 2. The Particle-In-Cell formalism

CHAPTER

THREE

SPATIAL DISCRETIZATION

9

PHARE Documentation, Release 1.0

10 Chapter 3. Spatial discretization

CHAPTER

FOUR

TEMPORAL DISCRETIZATION

11

PHARE Documentation, Release 1.0

12 Chapter 4. Temporal discretization

CHAPTER

FIVE

ADAPTIVE MESH REFINEMENT

5.1 Patch based approach

5.2 Recursive time integration

5.3 Field refinement

5.4 Particle refinement

5.5 Field coarsening

5.6 Fields at level boundaries

5.7 Particle at level boundaries

13

PHARE Documentation, Release 1.0

14 Chapter 5. Adaptive Mesh Refinement

CHAPTER

SIX

GETTING PHARE

6.1 Lastest commit

git clone --recursive https://github.com/PHAREHUB/PHARE

6.2 Latest release

6.3 Previous releases

15

PHARE Documentation, Release 1.0

16 Chapter 6. Getting PHARE

CHAPTER

SEVEN

BUILD PHARE

7.1 Build for production

cd path/to/dir/containing/PHARE
mkdir build
cd build
cmake -DCMAKE_CXX_FLAGS="-O3 -march=native -mtune=native" -DCMAKE_BUILD_TYPE=Release ..
→˓/PHARE
make -j

7.2 Build for debugging

cd path/to/dir/containing/PHARE
mkdir build
cd build
cmake -DCMAKE_CXX_FLAGS="-g3 -O0 -march=native -mtune=native" -DCMAKE_BUILD_TYPE=Debug -
→˓DCMAKE_CXX_FLAGS="-DPHARE_DIAG_DOUBLES=1" ../PHARE
make -j

17

PHARE Documentation, Release 1.0

18 Chapter 7. Build PHARE

CHAPTER

EIGHT

RUN PHARE FROM PYTHON

PHARE can run as a python script.

8.1 Python dependencies

PHARE requires a minimmum version of python 3.8 to run properly. Make sure python3 shows the version is at least
3.8. Python package dependencies are listed in requirements.txt file. Install dependencies for the user:

pip3 install --user -r requirements.txt

Install dependencies in a virtual environment:

python3 -m venv phare_venv
source phare_venv/bin/activate
pip3 install -r requirements.txt

8.2 Running PHARE

First, make sure it is accessible to python. Assuming PHARE source directory is in /path/to/PHARE, and the build
directory is

/path/to/build/, then use the following to let python know where to find PHARE:

export PYTHONPATH=/path/to/PHARE/pyphare:/path/to/build:$PYTHONPATH

Write a [simulation input script](../simulation_inputs.md) and run the following command:

python3 /path/to/my_script.py

19

PHARE Documentation, Release 1.0

20 Chapter 8. Run PHARE from python

CHAPTER

NINE

RUN FROM THE PHARE BINARY

21

PHARE Documentation, Release 1.0

22 Chapter 9. Run from the PHARE binary

CHAPTER

TEN

SIMULATION INPUTS

10.1 Python script structure

PHARE takes python scripts as inputs. They consists in declaring various blocks as follows.

------------ MANDATORY BLOCKS

Simulation(
some parameters
configuring numerical and AMR
parameters

)

MawellianFluidModel(
some parameters
configuring the magnetic field profile
and ion initial condition
as fluid moment profiles
ion particles are assumed to follow
locally Maxwellian distributions with these moments
)

------------ END OF MANDATORY BLOCKS

------------ OPTIONAL BLOCKS

ElectronModel(
configures electron fluid properties

)

ElectromagDiagnostics(
parameters configuring outputs
of E and B

)

(continues on next page)

23

PHARE Documentation, Release 1.0

(continued from previous page)

FluidDiagnostics(
parameters configuring ion moment outputs

)

ParticleDiagnostics(
some parameters configuring particle outputs

)

------------ END OF OPTIONAL BLOCKS

10.2 The Simulation block

The Simulation class is used to set general parameters to the simulation like the integration time, domain size, interpo-
lation order, or adaptive meshing. The Simulation must be the first block defined in an input script

10.3 Magnetic field and ions

10.4 Electron model

10.5 Diagnostics

10.5.1 Electromagnetic Diagnostics

10.5.2 Moment Diagnostics

10.5.3 Particle Diagnostics

10.5.4 Meta-data Diagnostics

24 Chapter 10. Simulation inputs

CHAPTER

ELEVEN

EXAMPLES

25

PHARE Documentation, Release 1.0

26 Chapter 11. Examples

CHAPTER

TWELVE

DATA ANALYSIS

12.1 Getting Data

12.2 Python Patch Hierarchy

12.3 Using the finest field available

27

PHARE Documentation, Release 1.0

28 Chapter 12. Data analysis

CHAPTER

THIRTEEN

PLOTTING FIELDS

29

PHARE Documentation, Release 1.0

30 Chapter 13. Plotting fields

CHAPTER

FOURTEEN

PLOTTING PARTICLE DISTRIBUTIONS

31

PHARE Documentation, Release 1.0

32 Chapter 14. Plotting particle distributions

CHAPTER

FIFTEEN

PHARE TESTS

15.1 Continuous integration

15.2 Unit tests

15.3 Functional tests

• genindex

• modindex

• search

33

	The hybrid PIC formalism
	The ion equations
	The electron momentum equation
	Electromagnetic field equations
	Quasineutrality
	Massless electrons
	Electron closure
	Dissipative terms

	The Particle-In-Cell formalism
	Spatial discretization
	Temporal discretization
	Adaptive Mesh Refinement
	Patch based approach
	Recursive time integration
	Field refinement
	Particle refinement
	Field coarsening
	Fields at level boundaries
	Particle at level boundaries

	Getting PHARE
	Lastest commit
	Latest release
	Previous releases

	Build PHARE
	Build for production
	Build for debugging

	Run PHARE from python
	Python dependencies
	Running PHARE

	Run from the PHARE binary
	Simulation inputs
	Python script structure
	The Simulation block
	Magnetic field and ions
	Electron model
	Diagnostics
	Electromagnetic Diagnostics
	Moment Diagnostics
	Particle Diagnostics
	Meta-data Diagnostics

	Examples
	Data analysis
	Getting Data
	Python Patch Hierarchy
	Using the finest field available

	Plotting fields
	Plotting particle distributions
	PHARE tests
	Continuous integration
	Unit tests
	Functional tests

